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There is an analogy between inductively-defined sets and computably enumerable sets that seems to
have been observed many times before, which gives an analogy between inductive-coinductive duality and
the duality between c.e. and co-c.e. sets.

The predicative construction of an inductive set begins with the empty set and applies the associated
operator iteratively enumerating the elements of the least fixed point. If further, this construction is in
some sense computable, then this should give a computable enumeration of the inductive set.

Dually, the predicative construction of an coinductive set begins with the entire set and iteratively
removes elements just how non-membership in a co-c.e. set is computed.

Old and well-known results in the literature on inductive definitions give a way to make this analogy
formal. All results presented here can be found in Hinman’s book Recursion-theoretic Hierarchies.

Theorem 1.1. The least fixed point of a computable monotone operator is computably enumerable. Moreover,
every computably enumerable set is 1-1 reducible to the least fixed point of a computable monotone operator.

If we broaden the class of monotone operators to Σ01 operators, then we get something slightly tighter.

Theorem 1.2. The least fixed point of a Σ01 computable monotone operator is computably enumerable. Moreover,
every computably enumerable set is the least fixed point of some Σ01 monotone operator.

The analogy can also be made formal by taking the perspective of inductively-defined sets as being
generated by rules and enumeration operators. Below I try to give intuitive sketches for some of the
statements.

Definition 1.3 (stages). Let 𝐹 ∶ 𝑃(𝑋) → 𝑃(𝑋) be a monotone operator. By transfinite recursion, we define

𝐹 𝛼 ∶= 𝐹(𝐹<𝛼)

with
𝐹<𝛼 ∶= ⋃

𝜉<𝛼
𝐹 𝜉.

Then ̄𝐹 ∶= ⋃𝛼∈Ord 𝐹
𝛼.

It’s a basic result of fixed point theory that ̄𝐹 = 𝜇𝐹 and that there is a least ordinal 𝜆 such that 𝐹<𝜆 = 𝐹𝜆
where |𝜆| ≤ |𝑋 |.

Definition 1.4. The closure ordinal |𝐹 | of 𝐹 is the least ordinal 𝜆 such that

𝐹<𝜆 = 𝐹𝜆.
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Definition 1.5.

1. An operator 𝐹 ∶ 𝒫 (𝜔) → 𝒫 (𝜔) is computable1 if there is a total Turing functional Φ ∶ 𝒫 (𝜔) → 2
such that

𝑥 ∈ 𝐹(𝐴) ⟹ Φ𝐴(𝑥) = 1

𝑥 ∉ 𝐹(𝐴) ⟹ Φ𝐴(𝑥) = 0

2. An operator 𝐹 ∶ 𝒫 (𝜔) → 𝒫 (𝜔) is Σ01 if there is a partial Turing functional Φ ∶ 𝒫 (𝜔) → 𝒫 (𝜔)

𝑥 ∈ 𝐹(𝐴) ⟺ Φ𝐴(𝑥) ↓= 1.

Proposition 1.6. If 𝐹 is a computable monotone operator, then

1. the sequence
(𝐹 𝑛)𝑛∈𝜔

is uniformly computable,

2. |𝐹 | ≤ 𝜔, and

3. 𝐹 is Σ01.

The essential idea is that use is finite and any element in the 𝜔th stage of the construction was already
added at some finite stage.

Proof.

1. Let Φ witness that 𝐹 is computable. Given inputs 𝑛, 𝑥, we want a uniform to decide 𝑥 ∈ 𝐹 𝑛. If 𝑛 = 0,
we just run the total procedure Φ∅(𝑥), and if 𝑛 = 𝑘 + 1, then we run Φ𝐹 𝑘(𝑥) and queries y ∈ Fk are
computed recursively.

2. Let 𝑥 ∈ 𝐹𝜔 = 𝐹(𝐹<𝜔), then Φ𝐹<𝜔(𝑥) = 1. Since the use of this computation is finite and the sets
(𝐹 𝑛)𝑛<𝜔 are increasing, then there is a maximal 𝑚 such that Φ𝐹𝑚(𝑥) = 1. Thus, 𝑥 ∈ 𝐹<𝜔.

3. Since the closure ordinal is ≤ 𝜔, it suffices to computably enumerate the union ⋃𝑛<𝜔 𝐹
𝑛, but since

this is a uniformly computable sequence, then this is immediate.

In this context, what is computable about the iterative construction is that we can computably decide if
some number 𝑥 is in the 𝑛th stage of the construction of the inductive set.

Lemma 1.7. Let 𝐹 be a Σ01 monotone operator, then |𝐹 | ≤ 𝜔.

Lemma 1.8. Let 𝐹 be a Σ01 monotone operator, then there is a computable relation 𝑅 such that for all 𝑥 ∈ 𝜔
and 𝐴 ∈ 2𝜔,

𝑥 ∈ 𝐹(𝐴) ⟺ ∃𝑛[𝐷𝑛 ⊆ 𝐴 ∧ 𝑅(𝑥, 𝑛)].

Proposition 1.9. Let 𝐹 be a Σ01 operator, then 𝐹 is computably enumerable.

By the duality for monotone operators, we get the dual result for Π0
1 operators and co-c.e. sets.

1More generally, the complexity of an operator is the complexity of the relation 𝑥 ∈ 𝐹(𝐴) as a subset of 𝜔 × 2𝜔.
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